
Software Engineering

and Architecture

Git in Practice

Git

• A highly personalized view, so take it as my opinion

• Git is driving a Ferrari without a safety belt!

– There are one zillion handles to crank!

– There are zillions of way to use Git efficiently

– There are zillions of way to get lost or mess your repo up

completely

– Keep it simple! You ain’t gonna need it!

• And

– Beware of the good spirit fellow student that ‘helps you’ by

issuing a few weird git command you do not understand!

• And makes git behave weird for the rest of the course

CS@AU Henrik Bærbak Christensen 2

If Git F… up badly?

• I have more than once done the ‘reboot’

• Delete the local workspace

– Remove from IntelliJ, delete folder with project

• Clone the repo anew

– Much better than let a fellow Git-Wizzard issue ten weird

commands, give up and walk away, leaving you with:

• Big ball of mud

CS@AU Henrik Bærbak Christensen 3

I am not alone ☺

CS@AU Henrik Bærbak Christensen 4

(The Name?)

• According to Quora

CS@AU Henrik Bærbak Christensen 5

The Core Workflow

• Git clone (your repo name)

– Get your copy of the code base (Done once! Or if ‘rebooting’ ☺)

• Git add (file)

– Add newly made files to the staging area/index (See below)

• Git commit –a –m ”meaningful explanation of what you

made”

– ”-a” auto adds all changes to existing files in repo the staging

area / index

– “-m” provide a log message

– IntelliJ will help remember to add them to the index when created

within it.

CS@AU Henrik Bærbak Christensen 6

The Core Workflow

• Git push

– Copy all your commits to the team’s remote repository

• Git pull

– Get your team mates commits into your local repo

• Merge conflicts must be handled

• Git status

– See status of your local workspace

• Git log -3

– See last 3 versions’ log messages

CS@AU Henrik Bærbak Christensen 7

pushpull

Branching

• Git fetch origin

– Get the branches overview from the origin + all newly made

branches

• Git branch –a

– Show all branches including all on the origin that you do not have

currently

• Git checkout {branchname}

– Checkout given branch, switch to it, and begin tracking it

• Git checkout –b {branchname}

– Create a new branch, switch to it, and begin tracking it

CS@AU Henrik Bærbak Christensen 8

.gitignore

• Do not pollute your repo!

– There are ‘source’ artefacts and there are ‘derived’ artefacts

• Source = manual hard intellectual work

– Java source files, graphics files, sound clips, etc.

• Derived = a tool produces it in milliseconds

– .class files, .jar, JavaDoc, test output, coverage HTML, …

• .gitignore

– Put a file ‘.gitignore’ in your root

– State all ‘derived’ artefacts in it (folders, file wildcards)

• /build ignore all that gradle produces in the build folder

• *.iml ignore IntelliJ configuration files

• /out ignore all IntelliJ generated files

CS@AU Henrik Bærbak Christensen 9

My own workflow

• Overviewing branches without graphics is hard!

• I develop on Lubuntu

– But makes most branching/merging in SourceTree on Windows

☺

• But can be viewed in shell:

CS@AU Henrik Bærbak Christensen 10

CheatSheet

• Git-tower.com

CS@AU Henrik Bærbak Christensen 11

Best Practices

• Commit related changes

– Fixing two bugs should lead to two commits

• Commit often

– ‘Take small steps’, break big into small, one step at a time

– Safe version to retract to in case of ‘Do Over’

• Push and pull often

– Do not let team efforts drift apart!

CS@AU Henrik Bærbak Christensen 12

Best Practices

• Use the commit log to express the goal

achieved/contents of the commit

CS@AU Henrik Bærbak Christensen 13

Best Practices

• I have developed a practice of a ‘tag line’

CS@AU Henrik Bærbak Christensen 14

Release: All features are working now
ReleaseCandidate: All features working (I think)

Milestone: Major (part) feature working now
Snapshot: Safe ground to retract to, all tests pass,

typically before starting new feature TDD.
Broken: Failing test case present, show ‘I got to this

point before taking a break’

Best Practices

• Commits may break but pushed ones may not

– I sometimes commit broken builds if I must change work task

• They highlight what I am working on to myself the next day!

– But never push them

• Pushed commits must reflect a finished step/feature/bugfix/all tests

pass

– But – best practice is of course that also commits have all tests

passing

CS@AU Henrik Bærbak Christensen 15

Mandatory Note

• Use AU GitLab. Make it private!

• Use your own login name on Git repo when you are in

the ‘driver seat’ = programmer role in TDD

• TAs are instructed to review you logs for

– Clarity and sensible commit logs

– ‘small steps and commit often’

– Equal workload of each group participant

CS@AU Henrik Bærbak Christensen 16

